Generalized t-Pebbling Numbers of Wheel and Complete r-partite graph

A. Lourdusamy
Department of Mathematics
St. Xavier's College (Autonomous)
Palayamkottai - 627 002, India
lourdugnanam@hotmail.com
C. Muthulakshmi@Sasikala
Department of Mathematics
Sri Paramakalyani College
Alwarkurichi - 627 412, India

Abstract

The generalized t-pebbling number of a graph $\mathrm{G}, \mathrm{f}_{\mathrm{glt}}(\mathrm{G})$, is the least positive integer n such that however n pebbles are placed on the vertices of G, we can move t-pebbles to any vertex by a sequence of moves, each move taking p pebbles off one vertex and placing one on an adjacent vertex. In this paper, we determine the generalized t-pebbling number of wheel W_{n} and complete r-partite graph.

Key Words: Graph, wheel and complete r-partitle graph.

1 Introduction

Let G be a simple connected graph. The pebbling number of G is the smallest number $f(G)$ such that however these $f(G)$ pebbles are placed on the vertices of G,
we can move a pebble to any vertex by a sequence of moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex [2]. Suppose n pebbles are distributed on to the vertices of a graph G, a generalized p pebbling step $[u, v]$ consists of removing p pebbles from a vertex u , and then placing one pebble on an adjacent vertex v , for any $\mathrm{p} \geq 2$. Is it possible to move a pebble to a root vertex r , if we can repeatedly apply generalized p pebbling steps? It is answered in the affirmative by Chung in [1]. The generalized pebbling number of a vertex v in a graph G is the smallest number $\mathrm{f}_{\mathrm{gl}}(\mathrm{v}, \mathrm{G})$ with the property that from every placement of $\mathrm{f}_{\mathrm{gl}}(\mathrm{v}, \mathrm{G})$ pebbles on G , it is possible to move a pebble to v by a sequence of pebbling move consists of removing p pebbles from a vertex and placing one pebble on an adjacent vertex. The generalized pebbling number of the graph G , denoted by $\mathrm{f}_{\mathrm{gl}}(\mathrm{G})$, is the maximum $\mathrm{f}_{\mathrm{gl}}(\mathrm{G})$ over all vertices v in G .

Again the generalized t-pebbling number of a vertex v in a graph G is the smallest number $\mathrm{f}_{\mathrm{glt}}(\mathrm{v}, \mathrm{G})$ with the property that from every placement of $\mathrm{f}_{\mathrm{glt}}(\mathrm{v}, \mathrm{G}\}$ pebbles on G, it is possible to move t pebbles to v by a sequence of pebbling moves where a pebbling move consists of the removal of p pebbles from a vertex and the placement of one of these pebbles on an adjacent vertex. The generalized t-pebbling number of the graph G, denoted by $f_{g l t}(G)$ is the maximum $f_{g l t}(v, G)$ over all vertices v of G. Throughout this paper G denotes a simple connected graph with vertex set $V(G)$ and edge set $\mathrm{E}(\mathrm{G})$.
$\lfloor x\rfloor$ denote the largest integer less than or equal to x and $\lceil x\rceil$ denote the smallest integer greater than or equal to x .

2 Known Results

We find the following results with regard to the generalized pebbling numbers of graph in $[2,6]$ and their generalized t-pebbling numbers in [3].

Theorem 2.1. For a complete graph $\mathrm{K}_{\mathrm{n}}, \mathrm{f}_{\mathrm{g} 1}\left(\mathrm{~K}_{\mathrm{n}}\right)=(\mathrm{p}-1) \mathrm{n}-(\mathrm{p}-2)$ where $\mathrm{p} \geq 2$.
Theorem 2.2. For a path of length $n, f_{g l}\left(P_{n}\right)=p^{n}$ where $p \geq 2$.
Theorem 2.3. For a star $K_{1, n}, f_{g 1}\left(K_{1, n}\right)=(p-1) n+\left(p^{2}-2 p+2\right)$ if $n>1$ and $p \geq 2$.
Theorem 2.4. The generalized t-pebbling number for a path of length n is $\mathrm{f}_{\mathrm{glt}}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{tp}^{\mathrm{n}}$.

Theorem 2.5. The generalized t-pebbling number of a complete graph on n vertices where $n \geq 3, p \geq 2$ is $f_{g l t}\left(K_{n}\right)=p t+(p-1)(n-2)$.

Theorem 2.6. The generalized t-pebbling number for a star $K_{1, n}$ where $n>1$ is $\mathrm{f}_{\text {glt }}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\mathrm{p}^{2} \mathrm{t}+(\mathrm{p}-1)(\mathrm{n}-2)$ where $\mathrm{p} \geq 2$.

Theorem 2.7. For $n \geq 4$, the generalized pebbling number of the wheel graph W_{n} is $\mathrm{f}_{\mathrm{gl}}\left(\mathrm{W}_{\mathrm{n}}\right)=(\mathrm{p}-1)+\left(\mathrm{p}^{2}-2 \mathrm{p}+1\right)$ where $\mathrm{p} \geq 2$.

Theorem 2.8. The generalized pebbling number of the fan graph F_{n} is $\mathrm{f}_{\mathrm{gl}}\left(\mathrm{F}_{\mathrm{n}}\right)=(\mathrm{p}-$ 1) $n+\left(p^{2}-2 p+1\right)$.

Theorem 2.9. For $G=K_{s_{1}, s_{2}, \ldots, s_{\mathrm{r}}}$ the generalized pebbling number is given by $\mathrm{f}_{\mathrm{gl}}(\mathrm{G})=\left\{\begin{array}{l}\mathrm{p}^{2}+(p-1)\left(s_{1}-2\right) \quad \text { if } p \geq n-s_{1} \\ p+(p-1)(n-2) \quad \text { if } p<n-s_{1}\end{array}\right.$.

We will now proceed to compute the genearlized t-pebbling numbers of wheel W_{n} and complete r -partite graph.

3 Computation of Genearlized t-pebbling number

Definition 3.1. We define the wheel graph denoted by W_{n} to be the graph with $\mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right)=\left\{\mathrm{h}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ where h is called the hub of W_{n} and $\mathrm{E}\left(\mathrm{W}_{\mathrm{n}}\right)=\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right) \cup\left\{\mathrm{hv}_{1}\right.$, $\left.h v_{2}, \ldots, h v_{n}\right\}$ where C_{n} denotes the cycle graph on n vertices.

Theorem 3.2. Let $K_{1}=\{h\}$. Let $C_{n}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a cycle of length n. Then the generalized t-pebbling number of the wheel graph W_{n} is $f_{g l t}\left(W_{n}\right)=p^{2}(t-1)+(p-$ 1) $n+\left(p^{2}-2 p+1\right)$.

Proof : By Theorem 2.5, $\mathrm{f}_{\text {glt }}\left(\mathrm{h}, \mathrm{W}_{\mathrm{n}}\right)=\mathrm{pt}+(\mathrm{p}-1)(\mathrm{n}-1)$. Let us now find the generalized t-pebbling number of v_{1}. Assume that v_{1} has zero pebbles. Let us place $\left(p^{2} t-1\right)$ pebbles at $v_{\left\lceil\frac{n}{2}\right\rceil}$, $\mathrm{p}-2$) pebbles at v_{n} and (p-1) pebbles at each of $\left.\mathrm{w}_{\mathrm{n}} \backslash \mathrm{v}_{1}, v_{\left\lceil\frac{n}{2}\right\rceil}, \mathrm{v}_{\mathrm{n}}\right\}$. Then t pebbles cannot be moved to v_{1}.

So $\mathrm{f}_{\text {glt }}\left(\mathrm{v}_{1}, \mathrm{~W}_{\mathrm{n}}\right) \geq \mathrm{p}^{2}(\mathrm{t}-1)+(\mathrm{p}-1) \mathrm{n}+\left(\mathrm{p}^{2}-2 \mathrm{p}+1\right)$.
Let us use induction on t to prove the $\mathrm{f}_{\mathrm{glt}}\left(\mathrm{v}_{1}, W_{\mathrm{n}}\right) \leq \mathrm{p}^{2}(\mathrm{t}-1)+(\mathrm{p}-1) \mathrm{n}+\left(\mathrm{p}^{2}-2 \mathrm{p}+1\right)$.
For $\mathrm{t}=1$, the result is true by Theorem 2.7.

By distributing $\mathrm{p}^{2}(\mathrm{~m}-2)+(\mathrm{p}-1) \mathrm{n}+\left(\mathrm{p}^{2}-2 \mathrm{p}+1\right)$ pebbles on $\mathrm{W}_{\mathrm{n}} \backslash\left\{\mathrm{v}_{1}\right\}$, then we can move $(\mathrm{m}-1)$ pebbles to the target vertex v_{1}.

That is, $f_{g(m-1)}\left(W_{n}\right)=p^{2}(m-2)+(p-1) n+\left(p^{2}-2 p+1\right)$. Suppose $p^{2}(m-1)+(p-1) n+\left(p^{2}-2 p+1\right)$ pebbles are distributed on to the vertices of $W_{n} \backslash\left\{\mathrm{v}_{1}\right\}$. Let the target vertex be v_{1} of C ${ }_{n}$.

If there is a vertex in C_{n} with at least p^{2} pebbles, then a pebble can be moved to v_{1}. Using only p^{2} pebbles through h. The remaining $p^{2}(m-2)+(p-1) n+\left(p^{2}-2 p+1\right)$ pebbles are sufficient to put ($\mathrm{m}-1$) additional pebbles on v_{1} by using induction. Otherwise any one of the vertices of $\mathrm{W}_{\mathrm{n}} \backslash\left\{\mathrm{v}_{1}\right\}$ say $v_{\left\lceil\frac{n}{2}\right\rceil}$ receive at least p pebbles and each of the vertices $\mathrm{W}_{\mathrm{n}} \backslash\left\{\mathrm{v}_{1}, v_{\left\lceil\frac{n}{2}\right\rceil}\right\}$ receive $\mathrm{p}-1$ pebbles then from $v_{\left\lceil\frac{n}{2}\right\rceil}$ using a sequence of
pebbling moves, $v_{\left\lceil\frac{n}{2}\right\rceil}, v_{\left\lceil\frac{n}{2}\right\rceil-1}, \ldots, \mathrm{v}_{1}$ we can move a pebble to v_{1}. Remaining $\mathrm{p}^{2}+(\mathrm{p}-1)$ $\left(\mathrm{n}-\left\lceil\frac{n}{2}\right\rceil+2\right)+\left(\mathrm{p}^{2}-3 \mathrm{p}+1\right)>0$. So by induction, $(\mathrm{m}-1)$ pebbles can be moved to v_{1}. Hence in all cases $f_{\mathrm{glm}}\left(\mathrm{v}_{1}, \mathrm{~W}_{\mathrm{n}}\right) \leq \mathrm{p}^{2}(m-1)+(\mathrm{p}-1) \mathrm{n}+\left(\mathrm{p}^{2}-2 \mathrm{p}+1\right)$. Therefore $\mathrm{f}_{\mathrm{glt}}\left(\mathrm{W}_{\mathrm{n}}\right)=\mathrm{p}^{2}(\mathrm{~m}-$ $1)+(p-1) n+\left(p^{2}-2 p+1\right)$.

Definition 3.3. A graph $G=(V, E)$ is called an r-partite graph if V can be partitioned into r non-empty subsets $V_{1}, V_{2}, \ldots, V_{r}$ such that no edge of G joins vertices in the same set. The sets $V_{1}, V_{2}, \ldots, V_{r}$ are called partite sets or vertex classes of G. If G is an r-partite graph having partite sets $V_{1}, V_{2}, \ldots, V_{r}$ such that every vertex of V_{i} is joined to every vertex of V_{j} where $1 \leq i, j \leq r$ and $i \neq j$, then G is called a complete r partite graph. If $\left|V_{i}\right|=s_{i}$ for $i=1,2, \ldots, r$ then we denote G by $K_{s_{1}, s_{2}, \ldots, s_{r}}$.

Notation 3.4. For $s_{1} \geq s_{2} \geq \ldots \geq s_{r}, s_{1}>1$ and if $r=2, s_{2}>1$, let $K_{s_{1}, s_{2}, \ldots, s_{r}}$ be the complete r-partitle graph with $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{r}}$ vertices in vertex classes $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{r}}$ respectively. Let $\mathrm{n}=\sum_{i=1}^{r} s_{i}$.

Theorem 3.5. For $G=K_{s_{1}, s_{2}, \ldots, s_{r}}$ the generalized t-pebbling number for a complete r partite graph G is given by

$$
\mathrm{f}_{\mathrm{glt}}(\mathrm{G})=\left\{\begin{array}{l}
p t+(p-1)(n-2) \quad \text { if } p t<n-s_{1} \\
\mathrm{p}^{2} t+(p-1)\left(s_{1}-2\right) \quad \text { if } p t \geq n-s_{1}
\end{array} .\right.
$$

Proof :

Case i: Assume pt <n- s_{1}.

Let us place $\mathrm{pt}+(\mathrm{p}-1)(\mathrm{n}-2)-1$ pebbles on the vertices of $\mathrm{G}-\{\mathrm{v}\}$ as follows. Let us choose ($\mathrm{t}-1$) vertices and we place $\mathrm{p}+(\mathrm{p}-1)$ pebbles on each of the $(\mathrm{t}-1)$ vertices and we place ($\mathrm{p}-1$) pebbles each on the remaining vertices clearly t pebbles cannot be moved to v .

Hence $\mathrm{f}_{\mathrm{glt}}(\mathrm{v}, \mathrm{G})>(\mathrm{t}-1)[(\mathrm{p}+(\mathrm{p}-1)]+(\mathrm{p}-1)(\mathrm{n}-\mathrm{t})$

$$
\begin{aligned}
& =\mathrm{pt}+(\mathrm{p}-1)(\mathrm{n}-2)-1 \\
& \geq \mathrm{pt}+(\mathrm{p}-1)(\mathrm{n}-2) .
\end{aligned}
$$

Next we will use induction to show that $\mathrm{pt}+(\mathrm{p}-1)(\mathrm{n}-2)$ pebbles are sufficient to move t pebbles to any desired vertex. For $t=1$ results is true by Theorem 2.9. Suppose $t>$ s_{1}, and $\mathrm{pt}+(\mathrm{p}-1)(\mathrm{n}-2)$ pebbles are placed on the vertices of G. Let the target vertex be v of C_{k} for some $k=1,2, \ldots, n$. If there is a vertex w of $C_{j}(j \neq k)$ with at least p pebbles then a pebble can be placed on v.

The remaining $\mathrm{p}(\mathrm{t}-1)+(\mathrm{p}-1)(\mathrm{n}-2)$ pebbles are sufficient to put $(\mathrm{t}-1)$ additional pebbles on v by induction. If not then every vertex of ${\mathrm{G} \backslash \mathrm{C}_{\mathrm{k}}}$ wil have at most $(\mathrm{p}-1)$ pebbles on it. Suppose among these $n-s_{k}$ vertices, q is the number of vertices with at least one pebble. Therefore there will be $\mathrm{pt}+(\mathrm{p}-1)(\mathrm{n}-2)-\mathrm{q}$ pebbles on the vertices of C_{k}. We consider the following cases.

Subcase I: $\mathrm{q} \geq \mathrm{t}$.

We use pebbling move from $\mathrm{s}_{\mathrm{k}}-1$ vertices of $\mathrm{C}_{\mathrm{k}} \backslash\{\mathrm{v}\}$ to put the remaining at most (p1) pebbles on each of the t of the q occupied vertices of $v(G)-C_{k}$. Using ($\left.p-1\right) t$ pebbles we can pebble t vertices with ($\mathrm{p}-1$) pebbles. Then remaining $(\mathrm{p}-1)(\mathrm{n}-2)-(\mathrm{q}-\mathrm{t})$ pebbles are in $C_{k} \backslash\{v\}$. From the t vertices with p pebbles we can move t pebbles to v.

Subcase ii : q < t.
As in subcase (i) first we will put ($\mathrm{p}-1$) more pebbles on each of these q vertices by maiing $(p-1) q$ moves from the vertices of $\mathrm{C}_{\mathrm{k}} \backslash\{\mathrm{v}\}$ in order to put q pebbles on v . Then we have to place $t-q$ additional pebbles on v. So we use $p^{2}(t-q)+(p-1) p q=p^{2} t-p q$ pebbles among $p t+(p-1)(n-2)-q$ pebbles in the vertices of $C_{k} \backslash\{v\}$. Hence in all the cases $\mathrm{f}_{\mathrm{glt}}(\mathrm{v}, \mathrm{G}) \leq \mathrm{pt}+(\mathrm{p}-1)(\mathrm{n}-2)$.

Case ii: Assume $\mathrm{pt} \geq \mathrm{n}-\mathrm{s}_{1}$.

Let the vertices of C_{1} be $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ and let $v_{s_{1}}$ be the target vertex. Let us place $\mathrm{p}^{2} \mathrm{t}+(\mathrm{p}-1)\left(\mathrm{s} _1-2\right)$ pebbles on the vertices of C_{1} as follows. Let us place $\mathrm{p}^{2} \mathrm{t}-1$ pebbles on v_{1} and place ($\mathrm{p}-1$) pebbles each on ($\mathrm{s}_{1}-2$) vertices of C_{1} other than v_{1} and $v_{s_{1}}$. In this case t-pebbles cannot be moved to $v_{s_{1}}$. Hence $\mathrm{f}_{\mathrm{glt}}(\mathrm{G}) \geq \mathrm{p}^{2} \mathrm{t}+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)$.

Next we will use induction on t to prove that $\mathrm{p}^{2} \mathrm{t}+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)$ pebbles are sufficient to put t pebbles on any desired vertex clearly the claim is true for $\mathrm{pt}=\mathrm{n}-\mathrm{s}_{1}$.

Since by case(i) $\mathrm{f}_{\mathrm{glt}}(\mathrm{G})=\mathrm{pt}+(\mathrm{p}-1)(\mathrm{n}-2)$

$$
\begin{aligned}
& =\mathrm{pt}+(\mathrm{p}-1)\left(\mathrm{pt}+\mathrm{s}_{1}-2\right) \\
& =\mathrm{p}^{2} \mathrm{t}+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)
\end{aligned}
$$

Suppose $\mathrm{p}(\mathrm{m}-1)>\mathrm{n}-\mathrm{s}_{1}$ and $\mathrm{f}_{\mathrm{gl}(\mathrm{m}-1)}(\mathrm{G})=\mathrm{p}^{2} \mathrm{t}(\mathrm{m}-1)+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)=\mathrm{p}^{2} \mathrm{~m}+(\mathrm{p}-1) \mathrm{s}_{1}-$ $\left(p^{2}+2 p+2\right)$.

We prove the result is true for m where $p m>n-s_{1}$. Suppoe $p^{2} m+(p-1)\left(s_{1}-2\right)$ pebbles are distributed on the vertices of G. Let the target vertex be v of C_{k}. If there is a vertex in some $C_{j}(j \neq k)$ with at least p pebbles, then a pebble can be placed on v
using only p pebbles. The remaining $p^{2} m+(p-1) s_{1}-3 p+2$ pebbles are sufficient to put $(\mathrm{m}-1)$ additional pebbles on v , since $\mathrm{p}^{2}+2 \mathrm{p}-2-3 \mathrm{p}+2>0$. If not then every vertex of $\mathrm{G}_{\mathrm{k}} \mathrm{k}$ will contain either zero or at least one pebble on it. If there is a vertex say w in some $C_{j}(j \neq k)$ with at least one pebble on it, we use ($p-1$)p pebbles from the vertices of C_{k} to put ($p-1$) pebbles on w and hence a pebble can be placed on v. Since $p^{2}+2 p-$ $2-(p-1)(p+3)>0$, then remaining $\mathrm{f}_{\mathrm{gl}(\mathrm{m}-1)}(\mathrm{G})$ pebbles would suffice to put $(\mathrm{m}-1)$ additional pebbles on v. Otherwise, every vertex of $G \backslash C_{k}$ will have zero pebbles, using p^{2} pebbles we can place a pebble on v in this case the remaining $\mathrm{p}^{2}(\mathrm{~m}-1)+(\mathrm{p}-$ $1)\left(\mathrm{s}_{1}-2\right)$ pebbles would suffice to put $(\mathrm{m}-1)$ additional pebbles on v . Thus $\mathrm{f}_{\mathrm{glm}}(\mathrm{v}, \mathrm{G}) \leq$ $\mathrm{p}^{2} \mathrm{~m}+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)$. Therefore by induction $\mathrm{f}_{\mathrm{glt}}(\mathrm{v}, \mathrm{G}) \leq \mathrm{p}^{2} \mathrm{t}+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)$ for all $\mathrm{pt}<\mathrm{n}-\mathrm{s}_{1}$. Thus $\mathrm{f}_{\mathrm{glt}}(\mathrm{G})<\mathrm{p}^{2} \mathrm{t}+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)$ for all $\mathrm{pt} \geq \mathrm{n}-\mathrm{s}_{1}$ and so the proof is over.

References :

[1] F.R.K.Chung, Pebbling in Hypercubes, SIAM J. Discrete Maths., Vol 2(4)(1989) pp 467-472.
[2] G. Hurlbert, Recent Progress in graph pebbling, Graph Theory notes of New York XLIX (2005), 25-34.
[3] A. Lourdusamy and C. Muthulakshmi@ Sasikala, Generalized Pebbling Number, International Mathematical Forum, 5, 2010, No.27, pp.1331-1337.
[4] A. Lourdusamy and C. Muthulakshmi @ Sasikala, Generalized t-pebbling Number of a Graph, Journal of Discrete Mathematical Sciences \& Cryptography, Vol. 12 (2009), No. 1, pp. 109-120.
[5] A.Lourdusamy and C. Muthulakshmi@ Sasikala, Generalized pebbling Numbers of some Graphs, Sciencia Acta Xaveriana, Vol3, No.1, (20012), pp107-114.
[6] A.Lourdusamy and A. Punitha Tharani, Ont-pebbling graphs, Utilitas Mathematica,Vol. 87,(2012), pp.331-342.

